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ABSTRACT

Over recent years, a variety of shock-capturing schemes [lave been developed for the

Euler equations of gas dynamics. During this period, it has emerged that one of the more

successful strategies is to follow (lodunov's lead and utilize a nonlinear building block known

as a Riemann problem. Now, although Riemann solver technology is often thought of as

being mature, there are in fact several circumstances for which Godunov-type schemes are

found wanting. Indeed, one inherent deficiency is so severe that if left unaddressed, it could

preclude such schemes from being used to capture detonation fronts in simulations of complex

flow phenomena. In this paper, we highlight this particular deficiency along with some other

little known weaknesses of Godunov-type schemes, and we outline one strategy that we have

used to good effect in order to produce reliable high resolution simulations of both reactive

and nonreactive shock wave phenomena. In particular, we present results for simulations of

so-called galloping instabilities and detonation cell phenomena.

1Research was supported by the National Aeronautics and Space Administration under NASA Contract

No. NAS1-19480 while the author was in residence at the Institute for Computer Applications in Science

and Engineering (I(',ASE), NASA Langley Research ('.enter, Hampton, VA 23681,
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1. Introduction

Following the rise of computational fluid dynamics, numerical simulations of shock wave

phenomena are now commonplace. Such simulations are attractive as replacements for ex-

periments which are either difficult, dangerous, or expensive, and can be done for problems

which are not amenable to analytical methods. However, because of the disparate scales

involved, simulations are all too often under-resolved and so are of limited use. Indeed,

despite the plethora of numerical schemes that have been developed, only the Godunov-type

methods have been shown to produce, genuinely, high fidelity simulations of complex shock

wave phenomena (Berger and Colella, 1989; Quirk, 1992 a). Consequently, following a survey

of the literature, Godunov-type methods are likely to be picked up by people who are not

Mgorithm developers as tools with which to simulate real problems. Unfortunately, despite

their undoubted strengths, Godunov-type schemes have certain inherent weaknesses that

can, occasionally, result in simulations failing catastrophically. Amongst the cognoscenti,

such weaknesses, whilst not always fully understood, can be overcome. However, the non-

expert is severely disadvantaged by the fact that the various failings and their associated

fixes go largely unreported. Recently we have attempted to redress this unfortunate state of

affairs (Quirk, 1992 b), and here we present an abridged version of this work which is targeted

directly at people within the combustion community who would like to take advantage of

modern shock-capturing schemes for simulating detonation flows.

The rest of this paper is as follows. In Section 2 we present a brief outline of Godunov-

type schemes. This is followed by a section containing some specific examples of how different

schemes can fail. In Section 4 we describe the strategy that we use to improve the robustness

of our flow solvers, following which, we present results for simulations of galloping instabilities

and detonation cell phenomena. Finally, in Section 6 we present some conclusions that we
have drawn from this work.

2. Outline of Godunov-type Schemes

Many expositions of Godunov's method and its descendants appear in the literature

(Holt, 1984; Roe, 1986); here we simply want to present the general gist of such schemes in

order to orientate the reader for the material which follows in the remaining sections of this

paper.

With reference to Figure 1, a Godunov-type scheme may be viewed as follows. The

scheme works with a low-order projection of the flow solution; each mesh cell contains a

cell-averaged value for the true solution over the cell. Thus, the numerical representation

closely approximates the true solution near discontinuities, and regions of smooth flow are

reasonably well approximated by a series of step functions. This discrete system is inte-

grated by first reconstructing the flow solution within each cell. This step is effectively an

extrapolation process for finding the flow states at the edges of mesh cells given values at

the centres of cells. Note that, in general, the reconstructed solution whilst smoother than

the projected solution will still be discontinuous at cell interfaces. Next there comes an

evolution step. A Riemann problem is solved for each cell interface using the reconstructed
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Figure 1: A Godunov-type sclleme consists of three basic steps: rcconstruction_evolution

_ projection.

states on either side of tile interface as input data. Recall that tile Riemann problem for

any set of conservation laws arises, if initial data are prescribed as two semi-infinite states

(W=WLforz<0, W=WRforz>0). Tile solution toa Riemann problem consists of a

number of centred waves. For the one-dimensional Euler equations of gas dynamics there

are three waves. The inner wave is a contact discontinuity separating states at different

temperatures, and each of the two outer waves may be either a shock wave or an expansion

wave. Finally, tile different solutions to tile separate Riemann problems are averaged so as

to find a cell-centred projection of the flow solution at some new time level. If repeated,

the sequence reconstruction--+ evolution -+projection results in an accurate and well-behaved

scheme for simulating the propagation of shock waves.

Whilst the overall strategy of a Godunov-type scheme is largely clear-cut 2, the same can-

not be said of its individual components. For example, more often than not, the Riemann

problem for a system of conservation laws does not have an analytic solution and is there-

fore expensive to compute. Consequently, many workers prefer to compute an approximate

solution to the Riemann problem which embodies the spirit of the exact solution but which

is cheaper to compute (Roe, 1986; Einfeldt, 1988; Toro, 1991). Indeed, the design of approx-

imate Riemann solvers has become something of an industry in its own right, and there is

considerable debate concerning the relative merits of different solvers. Moreover, there are

2Here we have described the so-called MUSCL approach for producing a high-order Godunov method.

An alternative methodology is followed by flux-limited schemes where the reconstrtiction step is replaced by
a procedure which post-processes the Riemann solution.
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manycircumstancesfor which certain approximatesolversactually proveto be more reliable
than the exactsolver. Therefore,ill general,it is far from obviouswhich particular Riemann
solveris best suited to a given application.

The reconstructionstep is similarly open to different interpretation. Firstly, there is a
free choiceas to which variablesare reconstructed,and which quantities are derived from
the reconstructedvariables. Forexample,although shockcapturing schemesinvariably work
with the conservedvariables,experienceshows,at least for the Euler equations, that better
results are obtained if the reconstruction is performed using primitive variables. Secondly,
there is alsoa choiceasto the orderof accuracyof the reconstruction. As is commonpractice,
we employ piecewise-linearslopes(Quirk,1992 a); however, Colella and Woodward (1984)

use piecewise-parabolas to good effect in their PPM scheme, and more recently Harten ct

al. (1987) have introduced the idea of ENO schemes where the reconstruction step may be

carried out to some arbitrary order of accuracy.

It is worth noting, however, that to a large extent the quality of results produced will

depend on how well the flow solution is reconstructed near discontinuities and so the notional

order of accuracy for some reconstruction process is not necessarily a reliable indicator of its

actual performance. Typically, limiter functions (Roe, 1985) are employed so as to ensure

that the reconstruction process does not introduce unwanted overshoots near extrema, and

it is the properties of the chosen limiter function that largely dictate the quality of the flow

solution. But a limiter function is only as good as the data upon which it acts. For example,

although we employ a piecewise-linear reconstruction which results in a scheme that is nom-

inally only second-order accurate, the slopes are derived from the Riemann solutions which

are computed using tile cell-centred states as input data. For very high resolution simula-

tions which involve thousands of time steps, this strategy gives markedly better results for

weak discontinuities such as contact surfaces than does the third-order reconstruction pro-

cess proposed by Anderson et ai.(1985) which does not utilize the same level of characteristic

information. While the differences are much less marked for problems that contain just a

few time steps, they are still appreciable (see Figure 2).

Everything considered, given the basic framework of a Codunov-type scheme, it is possible

to construct many different variations on a theme. Unfortunately, there is no "correct" way of

doing things, for the theory which underpins this class of scheme does not always discriminate

between the different options that are available. In practice, seemingly innocuous details of

the reconstruction process can have a large bearing on the quality of tile results produced for

the sorts of very detailed simulations that will be necessary in order to unravel the dynamics

of detonation phenomena. Thankfully, the large scale flow features are normally insensitive

to such changes, and so one's faith in Godunov-type schemes is not unduly undermined by

the uncertainties in the precise details of the method.

Before proceeding to the next section which exposes some of the failings of Riemann

solvers, so as not to appear to paint an overly pessimistic view of the capabilities of Godunov-

type schemes, it is worthwhile showing what can be achieved if due care is taken. Figure 3

shows a snapshot taken from the simulation of a planar shock wave diffracting around a 90 °

corner (Quirk, 1992 b). This picture is similar to a Schlieren image in that the different
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Figure 2: Tile internal energy profiles computed for Sod's problem using: (a) 2 ''a order

characteristic MUSCL (Quirk, 1992)., (b)3 Ta order non-characteristic MUSCL (Anderson ct

el., 1985).

shades of grey depict the magnitude of tile gradient of the density field (tile darker tile

shade, the larger the gradient), and it clearly shows all the salient flow features as identified

experimentally by Bazenhova el al. (1984).

Briefly, with reference to Figure 4, the diffraction of the incident shock wave (AC) around

the corner gives rise to an expansion fan which emanates from (O). The shape of this fan's

lead characteristic (AQO) indicates that tile flow upstream of the incident shock is super-

sonic. The expansion fan interacts with the incident shock to form the disturbed shock front

(ADMN). The incident shock is sufficiently strong that this disturbed front is kinked; a Mach

reflection at the wall gives rise to a triple point at (M). A contact surface (ALO) marks tile

boundary between fluid that has been induced into motion by the incident shock and fluid

which has been processed by tile disturbed shock front. Note that the flow is separated from

the wall at a point slightly downstream of the apex of the corner, and a slipstream (OS)

separates the expanded flow from this region of ahnost stationary gas. Tile free end of this

slipstream rolls up into a vortex. A secondary shock wave (KTS) matches the pressure of the

flow accelerated by tile expansion fan to that of tile decelerated flow behind the disturbed

part of the incident wave. This secondary shock is kinked as a result of its interaction with

the slip stream (OS).. A secondary contact surface (TL) begins at the point of intersection

of the secondary shock wave with the weak shock (OT) which terminates the expansion

fan. Lastly, a shock wave (PB) is present so as to decelerate the reversed flow within the

separated region as it approaches the point of diffraction.
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Figure 3: A nulnerical Schlieren-typeimage taken from the simulation of a planar shock
wavediffracting arounda 90° corner.
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Figure 4" Schematic showing tile main flow fl_atures of tile above Schlieren-type image.
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3. Some Failings of Riemann Solvers

We now present some examples where certain Riemann solvers are known to give unreli-

able results for the Euler equations of gas dynanlics. Whilst our catalogue of failings is not

exhaustive, it should alert the reader to tile types of problems that they might encounter

when using (/odunov-type methods. It is important to realise that no one failing afflicts

all Riemann solvers. Conversely, however, it would appear that no one Riemann solver is

completely free of defects.

With reference to Figure 5, Example (a) shows how spurious post-shock oscillations can

occur whenever a shock wave moves very slowly during the course of a simulation. Here,

a one-dimensional shock wave is moving from left to right (for a Courant number of one,

it takes approximately 50 time steps for the shock to traverse a single cell). As the shock

moves relative to the mesh, so the smeared numerical shock profile inevitably changes shape.

Unfortunately, for many Riemann solvers including the exact solver, the points within the

smeared profile do not lie on the Hugoniot curve connecting the pre-shock state to the post-

shock state. Thus these two states cannot be connected by a single family of acoustic waves.

For such schemes, whenever the shock profile changes, so the supposedly passive wave fields

are activated (in this case, the u and u - a wave fields), thus giving rise to low frequency

oscillations. A thorough description of this particular failing has been given by Roberts

(1990). Note that these oscillations are not the same as tile high-frequency, post-shock

oscillations that afflict finite-difference shock-capturing schemes.

Example (b) in Figure 5 is taken from a simulation of double Mach reflection whic-ll

was performed using Roe's scheme; here we show a snapshot of the pressure contours at
one instant in time. The Mach stem is inexplicably kinked giving rise to a spurious triple

point (S). It should be noted that this kinking is not related to the slight bulging that is

often observed experimentally for this type of shock reflection problem. Such bulging arises

because the contact discontinuity emanating from the primary triple point is deflected by the

reflecting surface resulting in a strong wall jet which effectively pushes out the base of the

Mach stem. The mechanism behind this failing is not fully understood, but it would appear

to arise from the fact that tile Mach stem is closely aligned with the computational grid.

(_onsequently, little or no dissipation is provided by Roe's scheme, in a direction parallel to

the stem, to control the kinking.

Generally speaking, tile dissipation mechanism provided by many Riemann solvers proves

to be inadequate whenever a strong shock wave is aligned with the computational grid.

Example (c) shows the so-called carbuncle phenomena (Peery and hnlay, 1988) where some

schemes fail to produce a realistic bow shock for a blunt body placed in a high Mach number

flow (here we have plotted density contours). Note that along the stagnation line the bow

shock is more or less aligned with the body-fitted grid used for the calculation, and so very

little dissipation is added normal to the stagnation line in the vicinity of the bow shock; a

small amount of auxiliary dissipation applied in this region is generally sufficient to suppress

the carbuncle.

Example (d) in Figure 5 shows a particularly insidious failing that can occur when a

strong shock is aligned with the grid. Here we have plotted a single snapshot of the density
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Figure 5: Some Riemann solver failings: (a) Slowly moving shocks., (b) Kinked Mach steins.,

(c) The Carbuncle phenomena., (d) Odd-Even decoupling.
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contours taken from the simulation of an initially planar shock wave which is propagating

clown a duct, from left to right. A nominally uniform Cartesian grid was used for the

calculation; tile grid centre-line carried a small saw-tooth perturbation. This perturbation

acts like a forcing function which causes odd-even decoupling to occur, along the length of

the shock, in both the density and pressure fields. Interestingly, within the body of the

shock, the decoupling of tile density feld is out of phase with that of the pressure field. An

attempt to explain this failing has been given by Quirk (1992 b), but certain details of the

mechanism relnain unclear. It is clear, however, that this numerical instability only occurs

for strong shocks, and that it takes a long time to develop (here, the shock had propagated

approximately thirty channel widths before the instability first became apparent). Moreover,

as will be shown in Section 5, this particular instability has quite grave consequences for the

simulation of two-dimensional detonation fronts; waves produced by the numericM instability

can interfere with the genuine transverse waves associated with the propagation of the front.

For many problems, the nature of the flow solution is known a priori, and so it is fairly

obvious whenever a simulation gives anomalous results. But often no such safety net exists, in

which case it becomes very difficult to determine the fidelity of a numerical simulation. One

tactic that we routinely employ is to run a simulation two or more times, each time varying

the elements of the flow solver. For example, we may change our choice of Riemann solvers,

or we may change our choice of variables for the reconstruction process. Admittedly, the fact

that two such simulations give similar behaviour is no guarantee that the results are correct,

but it is useful for determining which features of the solution are likely to be numerical

artifacts. Lastly, it should be noted that many of the failings associated with Godunov-type

methods could be circumvented if strong shocks were fitted rather than captured. However,

given the complexity of a general purpose shock-fitting scheme, this option is not likely to

appeal to the worker who is merely using a Godunov-type scheme as a tool.

4. An Adaptive Riemann Solver

Having exposed some of the weaknesses of Riemann solvers, we now present a simple

strategy, that we have found useful, for improving the all-round robustness of Godunov-type

schemes. In essence, we select the precise flavour of upwinding to match the local flow data

such that a particular Riemann solver is only employed in those situations where it is known

to give reliable results. By recognizing the limitations of any one solver it is possible to reap

its advantages without suffering its attendant failings.

Our synergetic strategy has a number of attractions, not least of which is that some

favoured solver need not be jettisoned simply because it, occasionally, fails. However, it

does introduce the difficulty of how to decide when to use one Riemann solver in preference

to another. But it has been our experience that this added difficulty is not particularly

bothersome, for we tend to combine a single high resolution Riemann solver with just one

or two other solvers that prove more reliable under conditions which are fairly well-defined,

and so a set of ad hoc switching functions suffice. For example, some of the worst failings
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of Riemann solvers occur in the vicinity of strong shock waves. To overcome such failings

we use tile HLLE scheme (Einfeldt, 1988). Now it makes little sense to chop and change

the choice of Riemann solver used along the length of a shock wave, since to do so would

inevitably perturb a planar shock front. Hence, we apply this particular Riemann solver

throughout tile immediate vicinity of a strong shock. Thus tile HLLE switching function

need only locate the position of a shock wave, but such functions already exist in tile guise

of mesh refinement, monitor functions.

A simple test that identifies those cell interfaces which are in the vicinity of a strong
shock is to check whether or not

IP, -- Pt]

min(pl, p,.)
>_, (1)

where c_ is some threshold parameter which is problem dependent and pr and Pt refer to

tile pressures which act on tile interface. If this condition is met, tile two cells separated by

tile interface are flagged as lying within a strong shock. Then, when it comes to computing

cell-interface fluxes, if the cells either side of an interface have both been flagged as lying

within a strong shock, tile flux is computed using the HLLE solver. Note that since numerical

shocks are invariably smeared over several mesh cells, it is worth locating shocks using a

projection of ttle flow solution on a grid which is coarser than that used for the calculation.

On such a grid a shock will appear much less smeared, and so the left-hand side of tile above

switching function will be a fair indication of its strength. Once a set of cells have been

flagged on this coarse mesh, the flags may be prolongated to the actual computational mesh

so as to find those cells which lie in the vicinity of a shock wave.

Figure 6 shows how tile HLLE solver may be used to correct tile tendency of Roe's scheme

to produce kinked Mach stems, c.f. Figure 5 (b). For this calculation tile HLLE switching

function was tuned such that it would only be activated by the incident shock, and tile

principal Mach stem; tlfe threshold parameter c_ was simply set to half the strength of tile

incident shock wave as given by tile left-hand side of Equation 1. Note that apart from tile

region near tile Mach stem, these new results are very similar to tile old ones. This shows

that tile HLLE scheme has had no adverse affect on tile resolution of Roe's scheme.

Having presented the gist of our strategy, we see little point in trying to sell a particular

combination of solvers. Starting with some high resolution Riemann solver, whose choice will

inevitably be a matter of personal taste, the correct combination of solvers will depend both

on that schemes weaknesses and on the specific application in hand. hi turn, tile combination

of Riemann solvers will dictate tile choice of switching functions.
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(a) (b)

Figure 6: The HLLE scheme can be used to circumvent the tendency of Roe's method to

produce kinked Mach stems: (a) Pressure Contours, (b) HLLE switching function.

5. Galloping Instabilites and Detonation Cells

Ahnost all of our experience with Godunov-type schemes has been gained from calcula-

tions of nonreactive flows. However, as will be shown in this section, the basic lessons that

we have learnt remain important when it comes to performing simulations of detonation

phenomena. Thus far, for simplicity, we have utilized the so-called Reactive Euler equations

for our detonation simulations; a single reactant A is converted to a single product B by a

one-step irreversible chemical reaction which is governed by Arrhenius kinetics.

In one space dimension the reactive Euler equations may be written in non-dimensional

form as

0 Ppu 0 pu 2 + p 0

-_ E + _ ( E + p)_, = - 0

pZ puN K pZ exp -E+ /T

(2)

Here p, u, p, T, E, Z and E + are the density, velocity, pressure, temperature, total energy

per unit volume, reactant mass fraction, and the activation energy, respectively. Note that K

is a free parameter that simply sets the spatial and temporal scales. Typically, K is chosen

such that for a ZND wave the half-reaction length (the distance behind the detonation front

by which point half of the reactants have been consumed) is scaled to unit length. The
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following equations are used to close tile system (2)

1 2
E = pe+pqZ+._pu,

p =
T = PiP.

(3)

Here e is tile specific internal energy, 7 is tile ratio of specific heats and q is tile heat release

parameter for the chemical reaction A + B.
0w Of

We integrate the above system of equations, which are of the form _ + _ = s, using

the method of fractional steps

w,'+2 = £_.£_.£s.w '_

Ow
The source operator, Es, corresponds to integrating -b-/- = s, which in this case reduces to

integrating the single ODE, dz _ _KZexp_+/r. We assume that the temperature field isdt --

-frozen for this step, allowing us to use tile nominally exact operator

Z '_+' = Z '_exp(-K

where At is the time step going from time level n to time level n + 1. For the convective
0w Of

operator, £c, which corresponds to integrating -_- + _ = 0, we employ Hancock's finite-

volume scheme (Quirk, 1992a) in conjunction with the adaptive Riemann solver outlined

in this paper. Note that the convective operator uses a time step that is twice as large as

that used by the source operator. The generalization of this integration strategy to two

space dimensions simply consists of replacing the one-dimensional convective operator by its

two-dimensional counterpart.

To assess the capabilities of our scheme we have performed simulations of one-dimensional

pulsating detonations, or so-called galloping instabilities, for which bench-mark results ap-

pear in the literature (Fickett and Wood, 1966; Bourlioux et al., 1991). Here we limit

ourselves to presenting the case where the overdrive is 1.6 and the dimensionless parameters

that appear in equations (2) and (3) are given by: 7 = 1.2, E + = 50, q = 50 and K = 230.75.

We have run this problem using several different.mesh resolutions in combination with sev-

eral different approaches for performing the reconstruction step of our Godunov-type scheme.

Figure 7 shows the shock pressure history for the case where the computational grid pro-

vided 40 mesh cells per half-reaction length, and the reconstruction process operated on a

characteristic decomposition of the conserved variables. Qualitatively, this pressure trace

is identical in form to that presented by Bourlioux et al. (1991) which was found using a

scheme that fitted rather than captured the detonation front. Figure 8 shows a convergence

study for the variation of the peak shock pressure with mesh spacing for two popular limiter

functions, namely Superbee and Minmod (Roe, 1985), in both cases the reconstruction pro-

cess operated on the conserved variables. Note that a relative mesh spacing of 1 corresponds

to having 10 cells per half-reaction length, and so 0.125 corresponds to having 80 cells per
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half-reaction length. Pleasingly, the grid-converged value for the peak pressure is indepen-

dent of tile reconstruction process. Moreover, it is in close agreement with tile value given

by Fickett and Wood (1966), and tile value found by extrapolating the results of Bourlioux

ct a/.(1991).
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Figure 8: Variation of peak pressure with mesh spacing.

Even for this relatively simple problem, some numerical artifacts can occur if one is n,,t

careful. For example, at one stage ill the cycle of the pulsating detonation, tile profile for tile

reactant mass fraction is considerably steeper than the profile for the steady ZND detonation

wave upon whictl the mesh spacing is based. Consequently, as shown by Figure 9, a grid which

gives 10 mesh points for the half-reaction length of the ZND wave may at times give only h_df

the expected number of cells for the pulsating front. For a compressive limiter function such

as Superbee, if there are too few cells covering a steep but continuous profile, the profile will
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appear as a smeared discontinuity that needs steepening. Hence an under-resolved profile

is often artificially steepened by a compressive limiter. Here, such oversteepening causes

anomalies to appear in the shock pressure history, see Figure 10. Note that such anomalies

are not associated with the lead shock front, and so the question of whether the front is

fitted or captured is immaterial.
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Following Bourlioux (1991) wehavealsoconducteda two-dimen-siona]test of our deto-

nation code, namely, the simulation of tile transverse waves, or so-called cellular structure,

produced by a detonation wave travelling down a narrow channel. For this calculation the

overdrive is 1.2, the channel width is 10 half-reaction lengths, and the dimensionless param-

eters are 3' = 1.2, q = 50, E + = 10 and K = 3.124. The calculation was started with the

solution for the ZND wave as initial data. This planar detonation front was perturbed by

simply allowing it to ingest a small region of fluid where the rate constant K was artificially

decreased by 20%. The calculation was then run until the ensuing transverse wave structure

was fully developed, at which point a series of $chlieren-type images were taken so that

we could compare our results with Bourlioux's. These Schlieren-type images are shown in

Figure 11. Note that the calculation applied periodic boundary conditions along the top

and the bottom of the channel and that here we have plotted four periods. Qualitatively, at

least 3, these results compare well with Bourlioux's results, and all the salient features of the

flow have been resolved (256 mesh cells covered the width of the channel). In particular, the

regularity of the repeated vortex patterns are the same for both sets of calculations.

At this juncture, it is worth showing the results that were produced when we employed

an exact Riemann solver rather than our adaptive Riemann solver, see Figure 12 (only one

period is shown). As might be expected from having seen Figure 5 (d), spurious transverse

waves are produced in the vicinity of the lead shock front. These spurious waves prevent

the correct transverse wave structure from developing, thus ruining the simulation. It is our

contention that most, if not all, of the Riemann solvers that are commonly employed would

be similarly unable to capture the lead detonation front for this test problem. Whilst some

may take this as reason enough why one should always fit the lead shock front, we have

shown that if some care is taken, when it comes to detonation simulations, shock-capturing

remains a viable alternative to shock-fitting.

In an attempt to unravel some of the dynamics of the detonation wave for this problem,

we have rerun this test using a grid that was four times finer than before. In order to achieve

such high grid resolutions we employ a relatively sophisticated mesh adaption scheme the

details of which are too involved to give here (Quirk, 1991). Figure 13 presents a pair of

Schlieren-type images for the temperature field which show the local flow structure just

before, and just after, two triple points collide. It would appear that the collision gives ris_

to the familiar "explosion within an explosion", which in this case, because of the local shock

structure, is highly anisotropic. This explosion causes slugs of hot fluid to be shot fore and

aft giving rise to vortical structures which are similar to those associated with Rayleigh-

Taylor instabilities. Note how the impact of the forward facing jet on the lead shock front

causes the front to bulge.

Obviously, given the complexity of the flow field for this test problem there is little chance

of validating every detail of the simulation. However, we feel that our computational metho,t

has matured to the point where it may be relied upon to provide simulations of sufficient

fidelity for fathoming the details of complicated flow mechanisms as is done here.

3Owing to insufficient information, we are unable to perform a quantitative comparison.
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Figure 11: A sequence of four Schlieren-type snapshots which show the transverse wave
structure of the detonation front.

Figure 12: Spurious waves are produced, if the lead shock front is captured using an exactRiemann solver.
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Figure 13: A pair of Schlieren-typeimagesfor the temperaturefield which showthe sequence
of eventswhen two triple points collide.

6. Conclusions

In this paper, we have shown that Godunov-type schemes do not always live up to their

reputation as being models of robustness. Specifically, the upwind dissipation provided by

almost all Riemann solvers is inadequate for capturing detonation fronts it] complex, multi-

dimensional flows; a numerical instability can develop along the length of the detonation

front which interferes with the genuine transverse waves associated with the propagation of

the front. At the very least, we suggest that some artificial dissipation mechanism be used to

augment the inherent upwind dissipation so as to suppress this type of nuinerical instability,

albeit at a cost of some loss in resolution. In general, however, to improve the all-round

robustness of a Godunov-type scheme without incurring any appreciable loss in resolutions,

we advocate the use of an adaptive Riemann solver. The shortcomings of any one preferred

Riemann solver are circumvented by combining it with one or more complementary solvers,

such that an individual Riemann solver is only used in the sorts of situations for which it

is known to give reliable results. Admittedly this approach is not as straightforward to im-

plement as would be the addition of an auxiliary dissipation mechanism to one's favouri_,e

Riemann solver, but it does prove to be an effective means for producing high fidelity sim-

ulations of detonation phenomena. As such, it provides an alternative means of simulating

detonation phenomena for workers who might otherwise feel compelled to fit the detonati,n

front solely in order to avoid the numerical difficulties associated with strong shocks.
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